Assessing of Environmental and Personal Exposure to X-rays on Radiologists Working in Hospitals of Medical Sciences in Bandar Abbas

Abdolhamid Tajvar¹, Morteza Mortazavi Mehrizi², Milad Derakhshan Jazari³, Pegah Rastipisheh⁴, Mohammadreza Farahbakhsh⁵, Hamidreza Ghaffari⁶*

¹Department of Occupational Health and Safety Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; ²Department of Occupational Health Engineering, School of Health, shahid sadoughi university of medical sciences, yazd, Iran; ³Department of Public Health, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran; ⁴Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran; ⁵Department of Occupational Health Engineering, School of Health, kerman University of Medical Sciences, kerman, Iran; ⁶Department of Environment Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

*Corresponding Author: Hamidreza Ghaffari, Email: ghaffarih2@gmail.com, Tel: +98-917-7312034

Abstract

Background: X-ray is a type of radiation that their harmful effects on human health have been confirmed. The use of radiation in hospitals and medical centers for diagnostic, therapeutic, and research tasks is inevitable and is developing. So, it is essential to measure, evaluate, and control the amount of dose received by radiologists.

Methods: In the first phase of this study, using the checklist to study the results of badge film and how to use individual protective equipment in hospitals surveyed in this investigation and in the second phase, using the Radiometer (05-MKS) TERRA model of the x-ray in different departments of the study hospitals was measured.

Results: The maximum dose measured in different departments of hospitals studied by 19 micro Sievert/hour was reported, and in none of the hospitals, the dose has been exceeded. Also, after reviewing the reports of the badge film, it was found that there were no suspicious cases that indicate an excessive receiving dose. The use of protective equipment was as in a way that 52.6% said they were always using protective equipment, and 43.4% said they sometimes use it. 3.9% said they did not use X-ray protection equipment.

Conclusion: Considering that the dose measured in all hospitals of the study is less than the recommended limit proposed by the International Commission for Environmental Protection and the Technical Committee of Iran’s Professional Health. So, it is concluded that the radiation protection program is well executed.

Keywords: X-rays; Hospital; Interpersonal Confrontation; Environmental exposure; Radiologist

Introduction

The use of radiation has become more frequent by developing science and technology. Today, the application of Radionuclides resources and equipment in industries, agriculture, and medicine has a special place, and, in particular, the use of them in hospitals and medical centers for diagnostic, therapeutic, and research tasks are inevitable and is being developed every day. One of the most widely used radiations in hospitals and medical centers is X-ray.¹ This radiation is used due to high penetration power for imaging and detects radiological

Article History: Received: 16 December 2019; Revised: 10 January 2020; Accepted: 4 February 2020

Copyright: ©2020 The Author(s); Published by Shahid Sadoughi University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
wastages, diseases, and even treatment.2,5 A study conducted in Ireland was found to be subject to the highest dose of diagnostic radiology staff and those performing industrial Radiography.6 In the Cohort Study have confirmed the existence of a positive relationship between occupational exposure to Ionizing radiation and other types of cancer7-8 The somatic effects of X-ray include partial and temporal disorders in some physiological functions to serious dangers such as shortening the life, decrease in the body's potential against disease, reducing reproduction, causing cataracts, leukemia (blood cancer) and other cancers and damage to the developing embryo.9,11 Therefore, on the one hand, it is inevitable that the loss of it for living and human beings has been proved.1,12-13

In hospitals and other diagnostic and therapeutic centers, besides patients, technicians and people, such as radiologists, nurses, and doctors, may be exposed to X-ray exposure during different processes such as angiography, CT scan, radiology, and radiotherapy. The occupational exposure of these individuals is mainly in the face of low doses, and it is found that the risk of cancer is increased due to this exposure to the increase in absorption dose.14 Therefore, in the absence of safety considerations and recommended standards by national and international organizations, the exposure to such radiation can cause irreversible dangers to them. The basis of protection against radiation avoidance is unnecessary. The Committee for determining the extent of the occupational exposure of physical factors has accepted the proposed values of the International Commission for Radiation Protection (ICRP). And according to that limit, occupational exposure to radiologists is equivalent to 20 millisieverts per year for the average age of 5 and 50 millisieverts per year for just one year.15,16

On the other hand, based on the principle of ALARA job positioning, people must be far less determined than the allowable limits. The first and most fundamental pillar of the various organs of health care against Ionizing Radiation and the awareness of the amount of radiation present in the desired environment and determining the amount of light that the Radiographers and the patient, directly and indirectly, receive in the above environment. Then, according to measured doses, the quality and conditions available or based on the Dosimetry are taken, protective measures and health benefits are adopted. Therefore, measuring and determining the amount of radiation that radiologists and patients receive is one of the most essential and unavoidable tasks of health and protection care centers. By the way, due to the importance of the matter and the necessity of measurement, the constant monitoring, and control of the X-ray in the diagnostic and therapeutic centers of hospitals was tried to investigate the extent of the individual and the environmental working in hospitals and other clients referred to X-ray radiology.

Methods

The present study is a cross-sectional study that, in 2018 with the aim is to protect the health of radiologists employed in radiology centers and at the request of vice-chancellor of the University in five hospitals of the University of Medical Sciences in Bandar Abbas. The sampling method was conducted as a census, and the samples included all X-ray emitters at the above-mentioned centers. In the first phase of this study, we investigated the results of the badge film and the use of personal protective equipment by radiologists in hospitals studied in this investigation. For this purpose, after coordination with the department of health physics of the medical sciences of Hormozgan due to the use of the checklist, the required information was collected. The analysis criteria for examining the relationship between the application of protective equipment with gender and marital status were tests of chi-square. In the second phase of the study, the X-ray levels were measured in different departments of the study hospitals (including the control room, the patient’s waiting room, radiologists resting room, the waiting room of the patient’s companions).

A device that was used in this study to measure X-ray was (05-MKS) TERRA. The measurements were carried out in two phases, the first stage when the X-ray generator was switched off, and this was done in order to measure the dose, and the second stage was at the time of the machine activity. To do so, after specifying the workstations, the operator was asked to set the machine on the maximum of the beamforming method that normally runs with the radiology. Then they were asked to be at the workplace and light radiation to measure their exposure. It was tried at least three measurements per station in this way, the error rate is lower, and the measurement is more reliable in terms of accuracy.

Dosimetry determined the amount of radiation that the radiologist person received after each time of the process, and then the number of radiation performed in a month was counted and recorded. Therefore, the amount of radiologists is calculated over a month and is extended to a single chapter.
Results

In general, 76 radiologists employed in different departments of five public hospitals of the University Of Medical Sciences Of Hormozgan were examined in this study. 64.5 % of them were females (mean age 3.8 ± 34.5), and 35.5 % of them were male (mean age of 4.2 ± 38.5). Of all the radiologist participants in the study, 32.9 % were single, and the others were married. The status of the radiologists' distribution in hospitals of the medical science of Hormozgan is presented in Figure 1. As can be seen, most radiologists are in the Department of General radiology, and the lowest in the Department of Nuclear Medicine.

The results of the survey were conducted by film badge of radiologists who work in the angiography, radiology, CT scan, medicine nuclear and Radiation Therapy department from Five Public Hospitals Studied (consisted of Shahid Mohammadi Hospital, Pediatric Hospital, Khaliji-e-Fars Hospital, Vaiiasr Hospital, and Omid Radiotherapy Center) no suspicious cases were indicating that there were excessive doses. After measuring a local dose of X-ray at 12 stations of Vaiiasr Hospital, eight stations of Khaliji-e-Fars Hospital, ten stations of Shahid Mohammadi Hospital, six stations of Pediatric Hospital, and eight stations of Omid Radiotherapy Center are estimated the maximum amount of measured dosage in the station NO. 3 Crusher machine in the Khaliji-e-Fars Hospital at 10 hr/μSv. In none of the stations, the measured doses were not exceeded 25 hr/μSv.

X-ray levels were measured in five areas, including the control room, the patient's waiting room, the radiologists resting room, and the secretary's workplace in each of the five hospitals. The results are shown in Table 1. As can be seen, the maximum dose measured in different departments of hospitals in the case study was 19 hr/μSv that in comparison with the standard in none of the cases it was not more than 25 hr/μSv.

After reviewing the application of the X-ray protective equipment, it was found that none of the hospitals had been used in protective roof curtains. As shown in Table 2, the method of using individual protective equipment is not the same in this study by participants. To evaluate the use of lead apron, goggles, and thyroid shield 23, 79, and 12 percent were reported, respectively. In general, 52.6 percent of the participants in the study said they were always using appropriate protective equipment when working with X-ray, and only 3.9 % said they had not been using the equipment. Others, 43.4 %, said that they sometimes use X-ray protection equipment. As shown in Table 2, marital status and gender were significant with the use of individual protective equipment. Ladies in comparison to men and single people concerning married people observed most of the safety concerns of the radiations.
Table 1. Rate of measured doses (hr / μSv) in different parts of the case study.

<table>
<thead>
<tr>
<th></th>
<th>Shahid Mohammadi Hospital</th>
<th>Children Hospital</th>
<th>Khaliq-e-Fars Hospital</th>
<th>Omid Radiotherapy Hospital</th>
<th>Valiasr Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean S.D</td>
<td>Mean S.D</td>
<td>Mean S.D</td>
<td>Mean S.D</td>
<td>Mean S.D</td>
</tr>
<tr>
<td>Control room</td>
<td>0.17 0.03</td>
<td>0.19 0</td>
<td>0.12 0.01</td>
<td>0.16 0.03</td>
<td>0.19 0.03</td>
</tr>
<tr>
<td>Waiting room for sick companions</td>
<td>0.14 0</td>
<td>0.16 0.01</td>
<td>0.90 0.007</td>
<td>0.15 0.01</td>
<td>0.16 0.02</td>
</tr>
<tr>
<td>Rest room for radiant</td>
<td>0.17 0.04</td>
<td>0.16 0.02</td>
<td>0.14 0.09</td>
<td>0.19 0</td>
<td>0.15 0</td>
</tr>
<tr>
<td>Secretary Workplace</td>
<td>0.10 0.05</td>
<td>0.17 0</td>
<td>0.11 0</td>
<td>0.11 0.06</td>
<td>0.12 0.09</td>
</tr>
</tbody>
</table>

Table 2. shows the use of X-ray protection equipment and the link between gender and marital status

<table>
<thead>
<tr>
<th>How to use protective equipment</th>
<th>Permanent use</th>
<th>Occasional use</th>
<th>non-use</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Number</td>
<td>Percentage</td>
<td>Number</td>
<td>Percentage</td>
</tr>
<tr>
<td>gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>7</td>
<td>25.9</td>
<td>17</td>
<td>63</td>
</tr>
<tr>
<td>female</td>
<td>33</td>
<td>67.3</td>
<td>16</td>
<td>32.7</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>single</td>
<td>28</td>
<td>70</td>
<td>11</td>
<td>27.5</td>
</tr>
<tr>
<td>married</td>
<td>12</td>
<td>33.3</td>
<td>22</td>
<td>61.1</td>
</tr>
</tbody>
</table>

*There is a significant difference (P-value<0.05)

Discussion

According to the obtained results, the number of measured doses of all the body for x-ray in any of the stations located in different departments of the University of Medical Sciences in Hormozgan educational hospitals is more than recommended. The International Commission for Radiation Protection (ICRP) and the technical Committee of Professional Health of Iran (20 millisieverts per year for the average age of 5 years and 50 millisieverts per just one year). The reasons for this can be attributed to appropriate areas of the room, and the implementation of the safety regulations of the radiation protection in hospitals studied. Similar studies have been made in Kenya, Saudi Arabia, Kuwait, Ghana, Poland, and Pakistan, to measure and compare the occupational exposure of radiologists working in treatment centers with the limits offered by the International Commission for Radiation Protection (ICRP) that in all cases the exposure has been less than the recommended one. 17-23

Results of film badge-related reports showed that all of the radiologists had been studying the film badge. Second, the dose received by none of them has been exceeded, the results of the studies of Jabin et al., agree with our results.15 Eivaz Zadeh et al. also achieved similar results in a study conducted in Tehran’s military hospitals.24 But in a survey conducted by Constantina et al., to determine the status of occupational exposure of radiologists to Lithuanian medical centers. It was found that 2% of them received higher than 20 millisieverts per year. They pointed out the reason they received too much on non-job topics, including placing or putting badge film in the vicinity of prohibited areas.25 Another study conducted by Hussein et al. aimed at monitoring the occupational exposure of staff working in Japanese medical centers. It was found that during 92 years, there was no evidence that X-ray exposure was beyond the recommended limit of the International Commission for Radiation Protection (ICRP).26

After reviewing the application of X-ray protective equipment, it was found that the method of using individual protective equipment was not the same in participants of this study. Many of the radiologists did not use appropriate personal protective equipment, which is an undesirable condition compared to similar reviews.27-28 The lack of availability of radiologists working in hospitals to study these devices, as well as the lack of strict monitoring by the safety and health inspectors, can be cited in terms of its reasons. In some studies, lack of sufficient knowledge of the radiologists in relation to the safety of the radiation and their low understanding of the risk arising from exposure to the Ionizing Radiation as one of the reasons for no use or inadequate use of the protection equipment against the beams. In a study conducted by Jindal et al. It was found that the majority of Urology Residents were unable to use personal protective equipment due to lack of knowledge that is the way many of them did not use lead gloves or protective eye goggles when they encountered X-ray, or very few of them used Thyroid protector.29

Harris et al., also expressed in their study that although Urologists are exposed to X-ray exposure, but their knowledge is weak in relation to the safety of the lights and
the ways of protecting them, and holding formal training courses to address this shortcoming is necessary. In a study conducted by Yunus et al., it was observed that despite the poor level of awareness and knowledge of nurses working in the nuclear medicine unit, the relation with the safety of the radiation was enhanced, but after holding their training courses, their knowledge and knowledge were promoted to the medium level. The undesirable condition of the use of appropriate personal protective equipment provided by the radiologist participants in this study can be attributed to two major reasons.

A) Lack of access to appropriate equipment of radiologists; it is suggested that the Committee on Safety and Technical Protection of Hospitals after performing a job analysis should provide appropriate protective equipment tailored to any responsibility and after learning about how they are applied, put them at radiologists' disposal.

B) Lack of adequate and regular use of protective equipment by radiologists; it is suggested that training courses are aimed at improving the vision and culture of radiation for all radiologists working in hospitals, and then take strict monitoring on how they behave, especially regarding the application of appropriate personal protective equipment.

Despite the fact that the occupational exposure of staff in the study hospitals was below the recommended x-ray of the limits by International Commission on Radiation Protection (ICRP). However, it should be noted that this is based on the theory of certain effects of radiation, while many cancers and genetic damage caused by x-rays are caused by the probable effects of these rays. It may happen at all levels of exposure and it is believed that these effects are the most important risk of exposure in low doses used in diagnostic radiology and nuclear medicine Therefore, considering that 47.4 per cent of the participants in the study have stated that they do not use protective equipment or occasionally they employ them, suggesting an increasing increase in the use of x-ray in the form of diagnostic and therapeutic approaches. The assessment process and risk management of occupational accidents working in hospitals are regularly and continually, according to the radiation monitoring program proposed by ICRP. The main limitation of this study was not allowed to publish details of the results from the examination of the survey were conducted by film badge of radiologists who work in Angiography, Radiology, CT Scan, Nuclear Medicine and Radiotherapy Departments from five government hospitals.

Conclusion

Dose rate measured in all the studied hospitals were less than the recommended ICRP and National limits. It is suggested to establish a continuous environmental and individual X-ray monitoring system to prevent radiologists from encountering high-intensity X-rays due to the possible failure of the X-ray machine.

Acknowledgments

Authors are grateful of the Honorable Vice Chancellor of Research and Technology of Hormozgan University of Medical Sciences for the financial support of this study in the form of research design at number 9128 and the ethics code 183.1394.REC.HUMS.

References

9. Dias FL, Antunes LMG, Rezende PA, Carvalho FES, Silva CMD, Matheus JM, et al. Cytogenetic analysis in lymphocytes from workers occupationally exposed to low levels of ionizing radiation.
Environmental toxicology and pharmacology. 2007;23(2):228-33.